Trophic Positions


    Animal Migration Patterns


    Soil Microbial Ecology


Stable isotope analysis of a vast range of materials pertaining to ecological research allows researchers to access information not readily attainable by other standard analytical techniques. Stable isotopes are frequently used by ecologists as tracers in biological systems, enabling the tracking of elemental cycling within an ecosystem. Variation in the isotopic signatures of different geographic regions allows isotopes to be utilised as tracers of migration, whilst the principles of isotopic fractionation allow biogeochemical processes to be interrogated to levels of details unattainable from elemental compositions alone.

For example, carbon isotopes can be used to determine the primary production source responsible for energy flow in an ecosystem, whereas nitrogen isotopes are useful in identifying the trophic level position of an organism. Sulphur isotopes can distinguish benthic producers from pelagic producers, as well as marsh plant from phytoplankton producers.

Developing our understanding of these innate relationships between living organisms and their environment through stable isotope analysis aids our stewardship of the natural world to ensure that future generations enjoy the same wonders that we do today.

Publications on ecology using our instruments

Our customers use our instruments to do some amazing research in the ecology application field. To show you how they perform their research and how they use our IRMS instruments, we have collected a range of peer-reviewed publications which cite our products. You can find the citations below and then follow the links to the publishing journal should you wish to download the publication.

If you would like to investigate our available citations in more detail, or email the citation list to yourself or your colleagues then take a look at our full citation database.

155 results:

Using Stable Isotopes to Infer the Impacts of Habitat Change on the Diets and Vertical Stratification of Frugivorous Bats in Madagascar
PLOS ONE (2016)
Kim E. Reuter, Abigail R. Wills, Raymond W. Lee, Erik E. Cordes, Brent J. Sewall

Human-modified habitats are expanding rapidly; many tropical countries have highly fragmented and degraded forests. Preserving biodiversity in these areas involves protecting species–like frugivorous bats–that are important to forest regeneration. Fruit bats provide critical ecosystem services including seed dispersal, but studies of how their diets are affected by habitat change have often been rather localized. This study used stable isotope analyses (δ15N and δ13C measurement) to examine how two fruit bat species in Madagascar, Pteropus rufus (n = 138) and Eidolon dupreanum (n = 52) are impacted by habitat change across a large spatial scale. Limited data for Rousettus madagascariensis are also presented. Our results indicated that the three species had broadly overlapping diets. Differences in diet were nonetheless detectable between P. rufus and E. dupreanum, and these diets shifted when they co-occurred, suggesting resource partitioning across habitats and vertical strata within the canopy to avoid competition. Changes in diet were correlated with a decrease in forest cover, though at a larger spatial scale in P. rufus than in E. dupreanum. These results suggest fruit bat species exhibit differing responses to habitat change, highlight the threats fruit bats face from habitat change, and clarify the spatial scales at which conservation efforts could be implemented.

Using hydrogen isotopes of freshwater fish tissue as a tracer of provenance
Ecology and Evolution (2016)
David X. Soto, Keith A. Hobson, Leonard I. Wassenaar

Hydrogen isotope (δ2H) measurements of consumer tissues in aquatic food webs are useful tracers of diet and provenance and may be combined with δ13C and δ15N analyses to evaluate complex trophic relationships in aquatic systems. However, δ2H measurements of organic tissues are complicated by analytical issues (e.g., H exchangeability, lack of matrix-equivalent calibration standards, and lipid effects) and physiological mechanisms, such as H isotopic exchange with ambient water during protein synthesis and the influence of metabolic water. In this study, δ2H (and δ15N) values were obtained from fish muscle samples from Lake Winnipeg, Canada, 2007–2010, and were assessed for the effects of species, feeding habits, and ambient water δ2H values. After lipid removal, we used comparative equilibration to calibrate muscle δ2H values to nonexchangeable δ2H equivalents and controlled for H isotopic exchange between sample and laboratory ambient water vapor. We then examined the data for evidence of trophic δ2H enrichment by comparing δ2H values with δ15N values. Our results showed a significant logarithmic correlation between fork length and δ2H values, and no strong relationships between δ15N and δ2H. This suggests the so-called apparent trophic compounding effect and the influence of metabolic water into tissue H were the potential mechanisms for δ2H enrichment. We evaluated the importance of water in controlling δ2H values of fish tissues and, consequently, the potential of H isotopes as a tracer of provenance by taking account of confounding variables such as body size and trophic effects. The δ2H values of fish appear to be a good tracer for tracking provenance, and we present a protocol for the use of H isotopes in aquatic ecosystems, which should be applicable to a broad range of marine and freshwater fish species. We advise assessing size effects or working with fish of relatively similar mass when inferring fish movements using δ2H measurements.

Not so deserted…paleoecology and human subsistence in Central Iberia (Guadalajara, Spain) around the Last Glacial Maximum
Quaternary Science Reviews (2016)
José Yravedra, Marie-Anne Julien, Manuel Alcaraz-Castaño, Verónica Estaca-Gómez, Javier Alcolea-González, Rodrigo de Balbín-Behrmann, Christophe Lécuyer, Claude Hillaire Marcel, Ariane Burke

In contrast to the coastal areas of the Iberian Peninsula, the Upper Palaeolithic settlement of central Iberia, dominated by the Spanish plateau, is poorly known. Traditional models assume a total or virtual depopulation of the interior of the Iberian Peninsula during the Last Glacial. In this paper we present a detailed investigation of human-environment interactions through the first zooarchaeological, taphonomic and isotopic study of the key site of Peña Capón, a rock shelter located in the south-eastern foothills of the Central System range that contains a multi-layered deposit dated to marine isotope stage 2 (MIS 2). Analyses of the faunal assemblages of the Proto-Solutrean (3) and Middle Solutrean (2) layers show that human preferentially hunted horse, deer and iberian ibex living in the vicinity of the rock shelter. Isotope geochemistry of the animal remains of Peña Capón provides us with the first detailed intra-tooth multi-proxy analysis for this time period in south-western Europe, providing estimates of climatic conditions, seasonal flucturation of diet, as well as patterns of seasonal mobility. Our results indicate that human presence at Peña Capón was apparently restricted to relatively warm intervals around the LGM or reflects the presence of an ecological refuge, and provide us with evidence of recurrent human presence in the Iberian interior during the Upper Paleolithic prior to the Magdalenian.
Tags: carbon , nitrogen , arch , ecol , elem

Critical analysis of hydrogen production from mixed culture fermentation under thermophilic condition (60 °C).
Applied microbiology and biotechnology (2016)
Hang Zheng, Raymond J Zeng, Cathryn O'Sullivan, William P Clarke

Bio-hydrogen production from mixed culture fermentation (MCF) of glucose was studied by conducting a comprehensive product measurement and detailed mass balance analysis of their contributions to the final H2 yield. The culture used in this study was enriched on glucose at 60 °C through a sequential batch operation consisting of daily glucose feeds, headspace purging and medium replacement every third day in serum bottles for over 2 years. 2-Bromoethanesulfonate (BES) was only required during the first three 3-day cycles to permanently eliminate methanogenic activity. Daily glucose feeds were fully consumed within 24 h, with a persistent H2 yield of 2.7 ± 0.1 mol H2/mol glucose, even when H2 was allowed to accumulate over the 3-day cycle. The measured H2 production exceeded by 14 % the theoretical production of H2 associated with the fermentation products, dominated by acetate and butyrate. Follow-up experiments using acetate with a (13)C-labelled methyl group showed that the excess H2 production was not due to acetate oxidation. Chemical formula analysis of the biomass showed a more reduced form of C5H11.8O2.1N1.1 suggesting that the biomass formation may even consume produced H2 from fermentation.
Tags: carbon , ecol , gashead

Breeding origins and pattern of migration of Bluethroats Luscinia svecica wintering from Iberia to Senegal as revealed by stable isotopes
Bird Study (2016)
Juan Arizaga, Steven L. Van Wilgenburg, Daniel Alonso, Jose A. Cortés, Michel Leconte, Hamid Rguibi, Thijs Valkenburg, Pablo Vera, Keith A. Hobson

ABSTRACTCapsule: Stable isotope analyses reveal some degree of migratory connectivity of Bluethroat populations wintering from Iberia to West Africa.Aims: To identify the probable breeding origins of Bluethroats wintering from Iberia to Senegal.Methods: Bluethroat feathers (P1) were sampled from individuals at their wintering areas. These feathers were then analysed for stable H isotopes (δ2H). We assigned individual Bluethroats to approximate geographic origin using likelihood-based assignment procedures.Results: We observed spatial segregation between different Bluethroat populations. At wintering sites north of the Sahara Desert, Bluethroats wintering to the west came from further west origins than those which overwintered to the east. Bluethroats from central-eastern Europe overwintered either within the circum-Mediterranean region or in Senegal. We found no clear evidence supporting a sub-Saharan wintering range for birds breeding in Iberia (Luscinia svecica azuricollis subspecies).Conclusion: North ...

Seasonal Variation of Harbor Seal's Diet from the Wadden Sea in Relation to Prey Availability.
PloS one (2016)
Camille de la Vega, Benoit Lebreton, Ursula Siebert, Gael Guillou, Krishna Das, Ragnhild Asmus, Harald Asmus

The Wadden Sea has an important role for marine mammals in terms of resting, nursing and foraging. Harbor seal is the most abundant marine mammal species in this area. The use of the food resources of the Wadden Sea by seals is not clear, and previous studies showed that this species can travel kilometers away from their haul-outs to forage in the North Sea. In this study, we analyzed the stable isotopes of vibrissae from 23 dead harbor seals found on the island of Sylt to investigate their diet. The predator´s carbon and nitrogen isotope compositions were compared to the compositions of different potential prey items from the Sylt-Rømø Bight and from the North Sea in order to study seasonal pattern in the diet and in the foraging location. In parallel, seasonal variation of abundance and biomass of the potential prey items from the Sylt-Rømø Bight were studied and compare to their contribution to the seal´s diet. The results revealed a change in the seal´s diet from pelagic sources in spring to a benthic based diet in summer, and an increasing use of the North Sea resources in fall and winter in accordance with the seasonal variation of the availability of prey in the Sylt-Rømø Bight.

Comparison of PFASs contamination in the freshwater and terrestrial environments by analysis of eggs from osprey (Pandion haliaetus), tawny owl (Strix aluco), and common kestrel (Falco tinnunculus).
Environmental research (2016)
Ulrika Eriksson, Anna Roos, Ylva Lind, Kjell Hope, Alf Ekblad, Anna Kärrman

The level of PFAS (per- and polyfluorinated alkyl substances) contamination in freshwater and terrestrial Swedish environments in 2013/2014 was assessed by analyzing a range of perfluorinated alkyl acids, fluorotelomer acids, sulfonamides, sulfonamidoethanols and polyfluoralkyl phosphate diesters (diPAPs) in predator bird eggs. Stable isotopes ((13)C and (15)N) were analyzed to elucidate the dietary source. The tawny owl (Strix aluco, n=10) and common kestrel (Falco tinnunculus, n=40), two terrestrial species, and the osprey (Pandion haliaetus, n=30), a freshwater specie were included. In addition, a temporal trend (1997-2001, 2008-2009, 2013) in osprey was studied as well. The PFAS profile was dominated by perfluorooctane sulfonic acid (PFOS) in eggs from osprey and tawny owl, while for common kestrel perfluorinated carboxylic acids (∑PFCA) exceeded the level of PFOS. PFOS concentration in osprey eggs remained at the same level between 1997 and 2001 and 2013. For the long-chained PFCAs, there were a significant increase in concentrations in osprey eggs between 1997 and 2001 and 2008-2009. The levels of PFOS and PFCAs were about 10 and five times higher, respectively, in osprey compared to tawny owl and common kestrel. Evidence of direct exposure from PFCA precursor compounds to birds in both freshwater and terrestrial environment was observed. Low levels of diPAPs were detected in a few samples of osprey (<0.02-2.4ng/g) and common kestrel (<0.02-0.16ng/g) eggs, and 6:2 FTSA was detected in a majority of the osprey eggs (<6.3-52ng/g). One saturated telomer acid (7:3 FTCA), which is a transformation marker from precursor exposure, was detected in all species (<0.24-2.7ng/g). The (15)N data showed higher levels in osprey eggs compared to tawny owl and common kestrel, indicating that they feed on a 2-3 times higher trophic level. We conclude that ospreys are continuously exposed to PFAS at levels where adverse toxic effects have been observed in birds.

CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes
Journal of Experimental Marine Biology and Ecology (2016)
Mirja Hoins, Tim Eberlein, Dedmer B. Van de Waal, Appy Sluijs, Gert-Jan Reichart, Björn Rost

Carbon isotope fractionation (εp) between the inorganic carbon source and organic matter has been proposed to be a function of pCO2. To understand the CO2-dependency of εp and species-specific differences therein, inorganic carbon fluxes in the four dinoflagellate species Alexandrium fundyense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum have been measured by means of membrane-inlet mass spectrometry. In-vivo assays were carried out at different CO2 concentrations, representing a range of pCO2 from 180 to 1200μatm. The relative bicarbonate contribution (i.e. the ratio of bicarbonate uptake to total inorganic carbon uptake) and leakage (i.e. the ratio of CO2 efflux to total inorganic carbon uptake) varied from 0.2 to 0.5 and 0.4 to 0.7, respectively, and differed significantly between species. These ratios were fed into a single-compartment model, and εp values were calculated and compared to carbon isotope fractionation measured under the same conditions. For all investigated species, modeled and measured εp values were comparable (A. fundyense, S. trochoidea, P. reticulatum) and/or showed similar trends with pCO2 (A. fundyense, G. spinifera, P. reticulatum). Offsets are attributed to biases in inorganic flux measurements, an overestimated fractionation factor for the CO2-fixing enzyme RubisCO, or the fact that intracellular inorganic carbon fluxes were not taken into account in the model. This study demonstrates that CO2-dependency in εp can largely be explained by the inorganic carbon fluxes of the individual dinoflagellates.

Composition of stable carbon and nitrogen isotopes in five wetland plants and sediments from the Pearl River estuary, South China
Chemistry and Ecology (2016)
S. Y. Miao, L. D. Long, W. Q. Tao, Q. C. Zeng, J. H. Chen, J. L. Huang, Q. H. Wu, Y.J. Tang

ABSTRACTThis study sampled five plant species and adjoining sediments from the Qi’ao (Zhuhai) and Nansha (Guangzhou) coastal wetlands located in the Pearl River estuary, South China. The compositions of stable carbon and nitrogen isotopes as well as the content of carbon and nitrogen in the samples were analysed. Differences in carbon/nitrogen (C/N) ratio, and habitat feature were compared between exotic plants (Spartina alterniflora, Sonneratia apetala, and Laguncularia racemosa) and native mangroves (Aegiceras corniculatum and Acrostichum aureum). The results showed that for Qi’ao, which is nearer the sea, the conductivity of the sediments at this location was approximately two times higher than that at Nansha (more inland). The composition of both δ13C and δ15N in sediments was also higher at Qi’ao (−26.52‰ to −23.83‰ and 6.25‰ to 11.53‰, respectively) as compared to Nansha (−29.30‰ to −27.43‰ and 3.34‰ to 4.73‰, respectively). Overall, the exotic plants S. alterniflora and S. apetala at Qi’ao and S. a...

Effects of algal food quality on sexual reproduction of Daphnia magna
Ecology and Evolution (2016)
Jong-Yun Choi, Seong-Ki Kim, Geung-Hwan La, Kwang-Hyeon Chang, Dong-Kyun Kim, Keon-Young Jeong, Min S. Park, Gea-Jae Joo, Hyun-Woo Kim, Kwang-Seuk Jeong

Tags: carbon , nitrogen , ecol , elem